
PUBLIC

Copyright FALCON Consortium 2015 - 2017

Feedback mechanisms Across the Lifecycle for Customer-driven
Optimization of iNnovative product-service design

Acronym: FALCON
Project No: 636868

FoF-05-2014

Duration: 2015/01/01-2017/12/31

PROJECT DELIVERABLE 1.2:
FALCON Virtual Open Platform Architecture

and Interfaces
Content : This report defines the overall architecture of the Virtual Open Platform. The documentation
of the architecture includes all its components and defines technical quality standards regarding per-
formance, reliability and efficiency. In addition, state-of-the-art APIs and standards to ensure the ease
of use for all interfaces (APIs) between the partners’ components and especially all APIs defined for
3rd parties are documented briefly.

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 2 / 76

Versioning and contribution history

Version Description Contributors

0.1 Draft outline Karl Hribernik (BIBA)

0.2 Input according to the FALCON modules (Section 2) Simone Parotta (Holonix)

0.3 Input according to the FALCON modules (Section 2) Sang-Je Cho (EPFL)

0.4 Input according to the FALCON modules (Section 2) and
Technical Quality Standards

Marco Franke (BIBA)

0.5 Input according to the FALCON modules Wilfred van der Vegte (Delft)

0.6 Contribution to Technical Quality Standards Karl Hribernik (BIBA)

0.7 Input according to the FALCON modules Patrick Klein (BIBA), Christian
Melchiorre (SOFTECO), Panag-
iotis Gouvas (UBITECH)

0.8 Input according to software quality and architecture Marco Franke (BIBA)

Christian Melchiorre
(SOFTECO)

1.0 Input according to the FALCON modules Simone Parrotta (Holonix)

Panagiotis Gouvas (UBITECH)

Marco Franke (BIBA)

1.1 Edits for coherency Karl Hribernik (BIBA)

1.2 Update FALCON VOP architecture and minor changes Marco Franke (BIBA)

1.3 Update harmonization of D1.2 & D2.1 Marco Franke (BIBA)

Reviewer

Name Affiliation

Simone Parrotta Holonix

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 3 / 76

Table of contents

TABLE OF CONTENTS .. 3

LIST OF FIGURES ... 5

LIST OF TABLES ... 5

1 INTRODUCTION .. 6

1.1 OBJECTIVE OF WP1 .. 6
1.2 OBJECTIVE OF T1.2 .. 6
1.3 CONTENT OF THE DOCUMENT ... 6

2 FALCON VIRTUAL OPEN PLATFORM ARCHITECTURE .. 7

2.1 FALCON VOP ARCHITECTURE MODEL .. 7
2.2 FALCON VOP FINAL DRAFT ARCHITECTURE .. 10
2.3 FALCON VOP COMPONENTS ... 11

2.3.1 FALCON Virtual Open Platform Core .. 12
2.3.1.1 VOP Infrastructure Services .. 12
2.3.1.2 Authorization and Access Control ... 18
2.3.1.3 FALCON Data Federation Module .. 19
2.3.1.4 FALCON Ontology ... 20
2.3.1.5 KCCM ... 21
2.3.1.6 RDFizer.. 23
2.3.1.7 Linking Component ... 24
2.3.1.8 Triple Store .. 25
2.3.1.9 JDBC Interface/JDBC Endpoint .. 26
2.3.1.10 Pub/sub Query Endpoint ... 27
2.3.1.11 SPARQL Endpoint ... 28

2.3.2 FALCON PUI Wrappers .. 29
2.3.2.1 PEID Wrappers .. 29
2.3.2.2 PEID Stream Wrappers .. 30
2.3.2.3 Social Media Wrappers .. 31
2.3.2.4 Social Media Stream Wrappers .. 32
2.3.2.5 Legacy System Wrappers... 33
2.3.2.6 Structured Data Source Wrappers .. 34

2.3.3 FALCON Collaborative PSS Design Solution ... 35
2.3.3.1 Virtual Open Platform Login Widget... 35
2.3.3.2 Collaborative Environment .. 37
2.3.3.3 VOP PUI Manager ... 39
2.3.3.4 Mediator Manager .. 40
2.3.3.5 Stream View Manager ... 42
2.3.3.6 FALCON KBE Mapping Tool ... 43
2.3.3.7 FALCON KCCM Management Tool ... 45
2.3.3.8 FALCON Data Export Module .. 47
2.3.3.9 FALCON Idea Manager... 48
2.3.3.10 FALCON Simulation and Forecasting Manager ... 51
2.3.3.11 FALCON PUI Alert Module .. 53
2.3.3.12 FALCON PUI Query Builder ... 55
2.3.3.13 FALCON Data Visualisation Module... 57

2.3.4 3rd Party Software .. 59
2.3.4.1 3rd Party LCA Tools ... 59
2.3.4.2 3rd Party CAx Tools ... 61
2.3.4.3 3rd Party Simulation Tools ... 63
2.3.4.4 Other Tools .. 64

2.4 INTERFACES WITH THIRD PARTY SOFTWARE AND APIS ... 64

3 TECHNICAL QUALITY STANDARDS ... 66

3.1 OVERALL APPROACH .. 66
3.1.1 Development Process Model .. 67

3.1.1.1 V-Model ... 67
3.1.1.2 Agile Software Development Model.. 67
3.1.1.3 Agile Methodologies in FALCON ... 68

3.1.2 Test Case Definition, Specification and Implementation ... 69
3.1.3 Proceeding, Validation of Performance, Reliability and Efficiency .. 70

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 4 / 76

3.2 PERFORMANCE ... 72
3.3 RELIABILITY .. 73
3.4 EFFICIENCY .. 73

4 SUMMARY AND OUTLOOK ... 75

4.1 SUMMARY .. 75
4.2 OUTLOOK ... 75

5 REFERENCES ... 76

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 5 / 76

List of Figures

Figure 1 FALCON modules as independently deployable services .. 7
Figure 2 FALCON modules as components in a client-server model ... 8
Figure 3 FALCON VOP Final Draft Architecture... 11
Figure 4 Login View of FALCON VOP ... 36
Figure 5 Dashboard of the FALCON VOP .. 38
Figure 6 Example widgets of FALCON VOP ... 38
Figure 7 Widget for wrapper selection .. 41
Figure 8 Configuration widget of social media wrapper ... 41
Figure 9 KBE parameter mapping widget of FALCON VOP ... 44
Figure 10 Open mapping file in KBE widget of FALCON VOP .. 44
Figure 11 KCCM Status Console widget of FALCON VOP .. 46
Figure 12 KCCM Result widget of FALCON VOP .. 46
Figure 13 Home widget of FALCON VOP’s Product Service Design Configurator .. 49
Figure 14 New Idea Creation widget of FALCON VO’s Product Service Design Configurator 49
Figure 15 Vote Ideas widget of FALCON VOP’s Product Service Design Configurator ... 50
Figure 16 Configuration widget for Simulation and Forecasting Manager of FALVON VOP 52
Figure 17 Example of the FALCON VOP’s PUI Alert widget ... 54
Figure 18 Query Builder widget of FALCON VOP .. 56
Figure 19 Data Analysis widget of FALCON VOP .. 58
Figure 20 Configuration widget of Life cycle Assessment of FALCON VOP.. 60
Figure 21 Result widget of Life cycle Assessment of FALCON VOP .. 60
Figure 22 Example of CAD relevant parameters ... 62
Figure 23 Parameter export capabilities in CATIA ... 62
Figure 24 Flows between FALCON VOP and external .. 64
Figure 25 Traditional V-model (SRM Technologies 2013) ... 67
Figure 26 FALCON development process .. 69
Figure 27 Test Results of Analyzer Plugin .. 70
Figure 28 Validation and verification approach .. 71

List of Tables

Table 1 Advantages and disadvantages of micro-service architecture .. 8
Table 2 Verification & Validation ... 66
Table 3 FALCON Test Strategy .. 69

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 6 / 76

1 Introduction
1.1 Objective of WP1
Within work package 1 the development of the FALCON Virtual Open Platform (FALCON VOP) will be
managed and one major objective is cohering the diverse software components developed in the FALCON
project. Establishment and enforcement of suitable methodologies and techniques for evolving, maintaining,
and applying the FALCON architecture internally and externally is one of the main tasks of this WP. Along
with this WP a requirements analysis within the Business Cases (WP5-WP8) has been conducted in order to
reflect end-user needs within FALCON VOP. Focusing on a system of system approach, the definition of
external interfaces to the FALCON architecture with potential users (customers) is crucial for the success of
the project. The results of the requirement analysis will directly influence the definition of the FALCON
VOP interfaces to external systems with particular reference to product-service design and development.
Here the integration of feedback acquisition module, modules for PUI collection and interchange of multi-
domain knowledge developed in RTD WPs is part of the work. In addition, the architecture team is respon-
sible for ensuring the quality of all aspects of the architecture, including performance, maintainability, and
most importantly the usability of internal and external interfaces. State-of-the-art principles of measuring
and ensuring i.e. the usability of the developed programming interfaces will be applied. The quality control
process will be executed continuously throughout the project and applied to public programming interfaces
as well as to the development process of internal components of the FALCON VOP.

In summary, the main objectives of WP1 are:

 to specify, analyze and evaluate technical and functional requirements of the FALCON VOP

 to develop, evaluate and maintain the architecture of the FALCON VOP

 to implement the different modules required for the FALCON VOP

1.2 Objective of T1.2
In Task 1.2, in cooperation with Task 1.1, the architecture team will define the overall architecture of the
FALCON VOP together with all partners. This task also includes monitoring and control of the
evolution of the platform architecture and its building blocks. The architecture team will ensure that the
architecture including all its components fulfils technical quality standards regarding performance,
reliability, and efficiency and ensure the application of suitable software development, management, and
evaluation techniques throughout the lifecycle of the project. The team will define interfaces to ensure the
ease of use between all partners' components.

1.3 Content of the document
Within this document, Chapter 2 defines the overall architecture of the FALCON Virtual Open Platform as
well as the chosen technology. Then, a detailed overview of the defined FALCON VOP modules is given.
For each FALCON VOP module, a description, preliminary interface definitions and mock-ups of the graph-
ical user interfaces are presented. Subsequently, the addressed technical quality standards of the FALCON
development process are described in detail. The deliverable closes with a summary and an outlook.

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 7 / 76

2 FALCON Virtual Open Platform Architecture
This section documents the specification of the FALCON VOP architecture, and explains the decisions taken
by the architecture team regarding architecture model and platform composition.

2.1 FALCON VOP Architecture Model
In the initial phases of the architectural analysis activities, different models for application integration were
taken into consideration, namely classical “monolithic” client-server architecture and a so-called micro-ser-
vices-based architecture. In the first model, each module is implemented as a component whose life cycle is
managed by some enterprise container, for instance in a Java Enterprise (JEE) architecture or as Java Spring
beans in a lighter weight Java Spring implementation.

The second model taken into consideration, and which in the end was selected as a basis model for the
FALCON VOP, consisted in an architecture where each module is implemented as a (REST-like or similar)
independently deployable service.

In the last few years, a set of patterns and best practices for the design of software applications as collection
of independently deployable services, particularly aimed at developing applications which adapt well to
cloud-based architectures, have come to be known under the term “micro-services” architectural patterns.
Though the term is used to mean many different things, basic concepts underlying these architectural patterns
are based on well-known Service Oriented Architecture (SOA). While trying to overcome most of the prob-
lems that these kind of architectures and related frameworks have shown over the years, basically less cou-
pled and lighter weight approaches (e.g. using protocols such as REST vs. SOAP etc.) are proposed. A de-
tailed discussion on micro-services architectures and their differences with classical SOA architectures is not
in the scope of this document. Please check the resources and bibliography for links to different sources of
information on the web.

In general terms, components in the micro-services-based architecture are modelled as independently de-
ployable processes which access each other remotely through well published interfaces and via some com-
mon protocol (e.g. the already mentioned HTTP-based REST messaging or asynchronous messaging through
message brokers like RabbitMQ or similar ones). A FALCON specific specialization is shown in Figure 1.

Figure 1 FALCON modules as independently deployable services

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 8 / 76

As we will see, the micro-services model provides many advantages but at the same time impose more strict
requirements in implementing best practices and design patterns in order to be successful, and needs specific
infrastructure services to replace container middleware functionality like component discovery and wiring,
configuration etc., which is shown in Figure 2.

Figure 2 FALCON modules as components in a client-server model

To begin with, below a list of advantages vs. disadvantages of the micro-services architectural model (with
respect to the monolithic client-server model) is summarized.

Table 1 Advantages and disadvantages of micro-service architecture

Advantages Disadvantages

Simplification of independent development by dif-
ferent, spatially separated teams (as is the case in
the FALCON consortium). Each team is responsi-
ble for the maintenance of the code base of a sin-
gle service. Communication between modules (and
teams) occurs only through well-defined and well
documented interfaces (APIs).

Higher complexity and architecture topology: Cur-
rently, one application is composed by a great
number of independent “moving parts” that need
to be coordinated and orchestrated.

Inherent low-coupling between services (but only
if design “best practices” are followed: See the
corresponding entry in the disadvantages column).
This also favours service reuse in different applica-
tions.

If the model is not implemented correctly and best
practices are not followed, this architectural can
lead to higher instead of lower coupling between
components.

(e.g. by passing as message payloads complex
json-encoded data structures that directly reflect
services’ internal data structures, increasing in-
stead of decreasing modules’ coupling).

Greater scalability, availability and tolerance to
failover: Under the right conditions, multiple
equivalent instances of the same service can be ac-

The lack of a shared container imposes the need
for more infrastructure (“middleware”) services,
which must be supplied separately. Service regis-
tration, discovery service, intelligent routing, con-
figuration management, message brokers etc are

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 9 / 76

tivated and load-balanced by the platform frame-
work in a transparent way for service clients and
the service itself.

This is one of the points that favours micro-ser-
vices-based architectures for the development of
“cloud-ready” or “cloud-native” applications.

good examples. In a monolithic application all
these functionalities are provided by the container,
while at present specific micro-services supplying
each of these capabilities must be deployed to-
gether with the application domain specific ser-
vices.

See section 2.3.1 on supporting technologies for
infrastructure services.

The model is a great enabler for continuous deliv-
ery, allowing frequent releases (new versions of a
service, which don’t change its external interface,
can be redeployed whilst keeping the rest of the
system available and stable).

Significant operations overhead: Deployment of
the set of developed services must be automatized
due to the difficulty of managing a potentially
large number of separate services installations,
which may not be as straightforward as deploying
a WAR in a container.

See section 2.3.1 on supporting technologies for
platform deployment.

The model allows for “polyglot” implementation
(when agreed on common communication mecha-
nisms, e.g. JSON over REST), meaning there’s no
need to implement all the services using the same
technologies or programming languages.

This point is relatively of little interest in our case,
since all partners seem to be comfortable with
java/spring platform.

By offering a wider “surface of attack” security
concerns become more critical.

Following from the previous point: Easier integra-
tion with external legacy systems, wrapped in a
service layer that makes these systems act like just
another service in the platform.

N/A

In the above introduction, we have made reference to the fact that such an architecture poses greater chal-
lenges, and needs of greater rigour and coordination by module developers, in order to be successful. As
mentioned, best practices and specific patterns must be followed, and a number of infrastructure services
must be supplied to tackle the management of the complex application topology and to replace the services
usually made available by the enterprise application container in the monolithic case.

Example of such services are the following:

 A service registry service, where business application services can register and discover each
other.

 A configuration management service, handling externalized configuration for services.

 Services for dynamic routing, load balancing, etc. if required

 Others

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 10 / 76

Besides middleware and infrastructure services to deploy with the application, there’s also the need for tools
to handle deployment, configuration and orchestration of a potentially high number of independent services.
Having to deploy and manage the configuration of many parts manually quickly becomes unmanageable
without the support of the right tools and technologies, more so in case the different services are implemented
through different technologies and language stacks (a possible scenario, though not the case for the FALCON
project). To address this latest problem, a containerization solution based on docker and related container
orchestration technologies (docker-compose) were selected for the FALCON VOP.

Containers acts as a sort of very lightweight virtual machines providing the minimum necessary environment
to run the service. Moreover, a container-packaged application presents a standardized interface to the ex-
ternal environment, through which it can be configured and managed. The use of container orchestration and
management tools adds to this the ability to configure and manage the whole set of containers composing
the application as a whole.

2.2 FALCON VOP Final Draft Architecture
This section presents the current status of the FALCON VOP architecture. Due to the agile software engi-
neering approach adopted by FALCON, this architecture is considered a final draft, in order to be able to
accommodate future developments in the project. However, any changes to this final draft can be expected
to be minimal and to only affect minor details.

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 11 / 76

Figure 3 FALCON VOP Final Draft Architecture

As shown in Figure 3, the proposed FALCON VOP architecture includes four groups of components: the
FALCON Virtual Open Platform Core, FALCON PUI Wrappers, FALCON Collaborative PSS Design So-
lution, and 3rd Party Software that are divided into three layers. In the bottom layer, FALCON PUI Wrappers
wraps a diverse set of data sources e.g. sensor data and social media data to provide a solid ground for
interoperability between different systems. In the middle layer, FALCON Virtual Open Platform Core pro-
vides core services to manage and integrate the knowledge and data from different sources, and make them
public accessible through FALCON Open API. In the top layer, FALCON Collaborative PSS Design Solu-
tion and 3rd Party Software includes services to help the management and utilization of the interoperable
knowledge and data for carrying out individual tasks depending on their own application scenarios.

2.3 FALCON VOP Components
As mentioned in the above section, the modules in the FALCON VOP architecture are grouped into four
groups: FALCON PUI Wrappers, FALCON Virtual Open Platform Core, FALCON Collaborative PSS De-
sign Solution, and 3rd Party Software. In this section, the groups and assigned micro-services/module are
listed.. The grouping is based on micro-service functionality due to its readability.

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 12 / 76

2.3.1 FALCON Virtual Open Platform Core
FALCON Virtual Open Platform Core includes core modules for managing interoperable product usage
information for the virtual open platform. In this section, the modules in the group FALCON Virtual Open
Platform Core are presented and explained in detail.

2.3.1.1 VOP Infrastructure Services

FALCON Service Archetype
(falcon-service-archetype)
Module type:
☒ VOP Core REST service

☐ Application/UI level tool

☐ PUI Wrapper

☐ Other

Description of Main Responsibilities of this Module:
This is not an individual VOP module in itself, but rather a Maven prototype used to allow
the automatic generation of a skeleton Maven project for other VOP core modules pre-
structured to integrate with the Spring Cloud environment defined for the FALCON plat-
form.
The modules generated with this archetype will include configuration of references to
the maven Nexus repository where the various FALCON platform artefacts will be up-
loaded and shared with the project partners, that will be made available through the URL
http://repository.falcon-h2020.eu/nexus and other configuration of necessary maven
plug-in(s) for connection and automatic deployment to the above configured nexus re-
pository.
Moreover, the VOP Core services generated through this archetype will contain refer-
ences in code and configuration to connect to the cloud infrastructure services distrib-
uted as part of the VOP infrastructure, such as the service registry and the cloud config-
uration service (see related module description forms)

Interfaces:
As mentioned, this module, not being a properly running VOP service, in this section in
place of a functional interface is described how this module is used to generate the
skeleton project for other modules. This is done through the invocation of a Maven
command as illustrated in the following:

Methods:

1. Generate

mvn archetype:generate -B \
 -DarchetypeGroupId=eu.falcon-h2020.platform \
 -DarchetypeArtifactId=falcon-service-archetype \
 -DarchetypeVersion=0.0.1 \
 -DgroupId=eu.falcon-h2020.platform \
 -DartifactId=$artifactId \

http://repository.falcon-h2020.eu/nexus

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 13 / 76

 -Dversion=0.0.1 \
 -Dpackage=eu.falcon.services.$packageName \
 -DmoduleClassName=$moduleClassName

More detailed instructions on how to use the falcon-service-archetype have been dis-
tributed by SOFT among partners and summarized in an internal technical working
document, FALCON_T1.3_Integration_Handbook.docx

GUI Mock-ups:
Not Applicable

Responsible Partner(s)/Developer(s):
Developer:

 Christian Melchiorre <christian.melchiorre@softeco.it> (SOFT): Nexus(X),
GIT(X), Jenkins(X)

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 14 / 76

FALCON VOP Service Registry
(falcon-service-registry)
Module type:
☒ VOP Core REST service

☐ Application/UI level tool

☐ PUI Wrapper

☐ Other

Description of Main Responsibilities of this Module:
Contrary to a classic enterprise client-server application environment, where usually a
container manager takes care of handling modules instances and lifecycle, in a micro-
services-based architecture (like the one selected for the FALCON VOP) a specific ex-
ternal service allowing modules to register itself so that its references can be retrieved
by other modules in the system is required.
A service registry is basically a store of services references, their instances and loca-
tions. Service instances are registered with the service registry on start-up and deregis-
tered on shutdown. The clients of the service and/or routers query the service registry
to find the available instances of a service, either directly by name or by querying specific
service properties.
A service registry is useful as it decouples service providers from consumers without the
need for DNS, and can provide further additional functionalities, like enabling client-side
load-balancing.
The implementation of the FALCON VOP service registry module (falcon-service-regis-
try) is based on the Open Source Eureka service registry implementation.

Interfaces:
The functionality provided by this module is made available to other VOP modules not
through the invocation of specific API interface functions but through specific configu-
ration of the module code. The structure already provided within the falcon-service-ar-
chetype module is being leveraged.

Functions:

1. Service Registration

This is the way a module can register itself on the service registry with a given
name.
As long as Spring Cloud and Eureka Core are on the classpath, any Spring
Boot application annotated with @EnableEurekaClient (as happens for modules
generated through the provided application) will try to contact a service registry
and register itself with it. The address where the service is expected to run and
the name the micro-service uses to register itself are provided, respectively,

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 15 / 76

with two system properties, namely eureka.client.serviceUrl.defaultZone,
and spring.application.name

2. Service Retrieval

The symmetric functionality provided by the service registry allows a client mi-
cro-service to retrieve references to another micro-service in order to invoke lat-
ter’s functionality.
There are various ways to retrieve services references. The immediate one is
exploiting the Spring-Cloud aware RestTemplate class, which takes the name of
selected micro-service as part of the invokation URL. Note that the URI uses a
service ID (the name with which the micro-service providing the invoked func-
tion registered with the registry), not an actual hostname.

String result = restTemplate.getForObject("http://falcon-service-

xxx/func", String.class);

A second way to retrieve service instances is to explicitly query the service reg-
istry through the Spring Cloud provided class DiscoveryClient, as shown in the
following code snippet:

@Autowired

private DiscoveryClient discoveryClient;

…
discoveryClient.getInstances("falcon-service-xxx")

(More details on the RestTemplate and DiscoveryClient classes’ interface can
be found on Spring Cloud online reference documentation1)

1 http://projects.spring.io/spring-cloud/spring-cloud.html

GUI Mock-ups:
This is a VOP Core infrastructure micro-service, hence does not provide a User Inter-
face.

Responsible Partner(s)/Developer(s):
Developer:

 Christian Melchiorre <christian.melchiorre@softeco.it> (SOFT): Nexus(X),
GIT(X), Jenkins(X)

http://projects.spring.io/spring-cloud/spring-cloud.html

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 16 / 76

FALCON VOP Externalized Configuration Service
(falcon-service-config)
Module type:
☒ VOP Core REST service

☐ Application/UI level tool

☐ PUI Wrapper

☐ Other

Description of Main Responsibilities of this Module:
A configuration service in a micro-services-based architecture provides server and cli-
ent-side support for externalized configuration in a distributed system. With the configu-
ration service, modules have a central place to manage external properties across all
environments, instead of relying on settings hardcoded in property files distributed with
the deployed module code, or having to manually provided
FALCON VOP Externalized Configuration service implementation is based on the Spring
Cloud Config1 implementation provided with the Spring Cloud platform.
The concepts on both client and server map identically to the Spring Environment and
PropertySource abstractions, so they fit very well with Spring applications, but can be
used with any application running in any language. As an application moves through the
deployment pipeline from dev to test and into production, you can manage the configu-
ration between those environments and be certain that applications have everything they
need to run when they migrate. The default implementation of the server storage
backend uses git to easily support labelled versions of configuration environments, as
well as being accessible to a wide range of tooling for managing the content. It is easy
to add alternative implementations and plug them in with Spring configuration.
1 http://projects.spring.io/spring-cloud/spring-cloud.html#_spring_cloud_config

Interfaces:
The functionality provided by this module is made available to other VOP modules not
through the invocation of specific API interface functions but through specific configu-
ration of the module code, also leveraging the structure already provided with the fal-
con-service-archetype module.
Functions:

3. Connection to the config service

 FALCON VOP modules generated via the provided archetype already have the
necessary configuration to connect to the running VOP configuration service.
The connection of the client module to the config service is configured by set-
ting two specific environment properties cloud.config.discovery.enabled and
cloud.config.discovery.serviceId

4. Retrieval of Configuration properties
As mentioned, Spring Cloud config concepts maps to the Spring environment
and PropertySource abstractions, so they fit very well with Spring applications

http://projects.spring.io/spring-cloud/spring-cloud.html

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 17 / 76

such as the FALCON modules. If the connection to the config service is config-
ured at startup (see previous point), environment properties values can be ac-
cessed by the modules’ code by binding them to variable like in the following ex-
ample:

@Value("${falcon.service.sample.property:default}")

String message;

Spring Cloud Config also provides mechanisms to dynamically refresh property
configuration information in case this is changed at runtime.

5. Retrieval of Configuration properties (REST interface)

Besides the mechanisms described in the previous point, the configuration ser-
vice also provide a REST-based interface to access configuration information.
Such information can be retrieved by invoking URLs such as
http://localhost:8888//{module name}/{profile}[/{label}]

Returning a JSON representation of the set of properties associated to the
given module. It is likely this way of accessing properties will not be used by
VOP modules, but can be a useful tool for monitoring or debugging instead.

(More details on the Spring Cloud service implementation can be found on Spring
Cloud online reference documentation1)
1 http://projects.spring.io/spring-cloud/spring-cloud.html#_spring_cloud_config

GUI Mock-ups:
This is a VOP Core infrastructure micro-service, hence does not provide a User Inter-
face.

Responsible Partner(s)/Developer(s):
Developer:

 Christian Melchiorre <christian.melchiorre@softeco.it> (SOFT): Nexus(X),
GIT(X), Jenkins(X)

http://projects.spring.io/spring-cloud/spring-cloud.html

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 18 / 76

2.3.1.2 Authorization and Access Control

Authentication and Access Control Module
(falcon-service-auth&accesscontrol)
Module type:
☒ VOP Core REST service

☐ Application/UI level tool

☐ PUI Wrapper

☐ Other

Description of Main Responsibilities of this Module:
This module will be developed in the context of Task T3.5 of WP3 – Data Security and
Privacy. Since the related task is not yet active, but will start in M22, the following module
description should be intended as general approach to authentication and authorization
module specification, and will be subject to change.

The FALCON Authentication and Access Control module implements the identity man-
agement and access control functionalities.

The identity management grants FALCON users and associate them with corresponding
roles. Access control verifies compliance with security rules defined for roles, activities
and resources within the ontology in use.

The module can be configured and enabled to collaborate with legacy resource servers
(e.g. using standard technologies like OAuth2) and will reuse architectural components
envisaged by currently widely used specifications and protocols (e.g. RFC2904, XACML,
SAML, etc.) to improve interoperability, reuse of components and integratability.

The FALCON login page uses the authentication manager. Access control will be ex-
ploited by FALCON VOP micro-services before providing a user with the requested func-
tionality/resource.

Interfaces:
Interfaces specification will be provided within T3.5 activities.

GUI Mock-ups:
This is a VOP Core infrastructure micro-service, hence does not provide a User Inter-
face.

 Rita Pasini <rita.pasini@softeco.it> (SOFT): Nexus(X), GIT(X), Jenkins(X)
 Christian Melchiorre <christian.melchiorre@softeco.it> (SOFT): Nexus(X),

GIT(X), Jenkins(X)

mailto:rita.pasini@softeco.it

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 19 / 76

2.3.1.3 FALCON Data Federation Module

Data Federation Module
(falcon-service-semanticfederationmodule)
module type:
☒ VOP Core REST service

☐ Application/UI level tool

☐ PUI Wrapper

☐ Other

Description of Main Responsibilities of this Module:
It offers a layer for semantic, virtual interoperability and integration specifically of item-
level product lifecycle data. It provides semantic interoperability for different kinds of
common data sources like social media, databases and file based repositories. It intro-
duces a layer of semantics on top of existing syntactic data structure descriptions to
avoid semantic integration conflicts and allows a scalable, efficient and comfortable in-
teroperability of product data across all of the stakeholders and IT systems involved in
VOP platform.
This module communicates with the Linked Sensor Data Access Mechanism to read and
write ontology triples as well as to read ontology triples from the Triple store. Moreover,
this module will be accessible by the web application Semantic Mediator Conf Adminis-
trator.

Interfaces:
Methods:

1. Query
a. Input: JSON string including a SPARQL query and a namespace
b. Output: String representing the query result as ontology

2. getConnectedDataSources
a. Input: Nothing
b. Output: XML String describing the connected Data Sources

3. getOntologyConcepts
a. Input: Nothing
b. Output: XML String describing the covered ontology concepts by the

connected data sources

GUI Mock-ups:
This module is a micro-service and offers only a REST interface. The corresponding
GUI mock-ups to configure this micro-service is located in VOP PUI Manager

Responsible Partner(s)/Developer(s):
Developer:

 Marco Franke <fma@biba.uni-bremen.de> (BIBA): Nexus(X), GIT(X), Jen-
kins(X)

 Quan Deng <dqu@biba.uni-bremen.de> (BIBA) : Nexus(X), GIT(X), Jenkins(X)

mailto:dqu@biba.uni-bremen.de

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 20 / 76

2.3.1.4 FALCON Ontology

FALCON Ontology
(No corresponding micro-service)
Module type:
☐ VOP Core REST service

☐ Application/UI level tool

☐ PUI Wrapper

☒ Other

Description of Main Responsibilities of this Module:
It plays a pivotal role, offering a semantic model for the PSS knowledge domain. It will
serve as a common reference model for the annotation and description of the entire
Product-Service Life Cycle. In addition, it will provide a unified and all spanning semantic
model covering domain knowledge of product-services to build a bridge between end
users of a to-be-designed software platform and the software platform implementation.
It involves all of the concepts, which represent the basic entities of the project and pro-
vides a linked data integration framework.

It consists of two levels which are an upper ontology and specific ontologies reflecting
the functionalities of VOP required by each business partners. Meanwhile, it represents
a base layer for the semantic reasoner.

Interfaces:
The FALCON ontology is a model and therefore, it has no software interface

GUI Mock-ups:
The FALCON ontology is a model and therefore, it has no GUI mock-ups

Responsible Partner(s)/Developer(s):
Developer:

 Sangje Cho <sangje.cho@epfl.ch> (EPFL): Nexus(-), GIT(-), Jenkins(-)

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 21 / 76

2.3.1.5 KCCM

Knowledge Consolidation & Cross sectoral Management Module
(falcon-service-KCCM)
Module type:
☒ VOP Core REST service

☐ Application/UI level tool

☐ PUI Wrapper

☐ Other

Description of Main Responsibilities of this Module:
The Knowledge Consolidation & Cross sectoral Management Module is foreseen to pro-
vide features (functions) for transformation of accessed data. These features can be
shared between VOP modules, thus allowing a kind of service orchestration in prepara-
tion of front-end modules.
The following features are planned:

- features referring to statistical/mathematical operations enabling to aggregate in-
formation from data sets

- features to transform state or appearance of information such as one currency
into another, or percentage of a single item to a set of items

- features to conduct automated filter operations such as derived queries: (data of
“today” => “today” will be transformed in actual date)

- features relating to semantical neighborhood of entities, exploring the benefits of
the contextual relevance. (e.g. cashing of “tomorrow’s data”)

- features relating to semantical neighborhood of entities, relating information
across PLM boundaries (e.g. date of purchase => guaranty Yes/No => mainte-
nance strategy => different data sets)

Samples:
 Statistics: Calculation of Arithmetic mean of sensor values;
 Transformation: Adding a column with Fahrenheit temperatures, which are cal-

culated based upon an existing column with Celsius temperatures;
 Math: Add a column with weight values, which are calculated based upon a vol-

ume column,
 Filters: Find amount of “warm colours” (if warm is defined with red, yellow; beige

…);
Interfaces:
Methods:

a. Input: The definition of input methods is currently under preparation, but
the methods will be named in reference to the mathematical, statistical or
logical operation, e.g.: Get_average_for_period(x,y,z);

b. Output: A JSON Object including inputs and the output arrays

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 22 / 76

GUI Mock-ups:
The KCCM is foreseen to become a backend module providing bundled features without
an own Graphical User Interface. The features will be encapsulated as services and
provided to the system accessible with the FALCON protocols.
However a User Interface for KCCM is provided by KCCM Management Tool (ref. to
section 2.2.3.4)

Responsible Partner(s)/Developer(s):
Developer:

 Patrick Klein <klp@bba.uni-bremen.de> (BIBA): Nexus(X), GIT(X), Jenkins(X)
 Marco Franke <fma@biba.uni-bremen.de>

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 23 / 76

2.3.1.6 RDFizer

RDFizer
(falcon-service-rdfizer
Module type:
☒ VOP Core REST service

☐ Application/UI level tool

☐ PUI Wrapper

☐ Other

Description of Main Responsibilities of this Module:
The RDFizer Component is responsible for transforming data into information in RDF
format. As a secondary function, it also delegates the RDF triples produced by the Se-
mantic Enrichment of data extracted from Social Networks to the RDF storage, which is
the FALCON Triple Store. It is part of the RDFizer specific development activities (see
for more details D2.1).

Interfaces:
Methods:

1. RegisterStream
a. Input: A JSON containing the Stream URI
b. Output: A JSON Object with Success/Failure Enumeration Code

2. CreateFacetedView
a. Input: A JSON containing the Stream URI and the facets that have to be

rendered
b. Output: A JSON Object with Success/Failure Enumeration Code

3. SaveView
a. Input: A JSON containing the state of the current view
b. Output: A JSON Object with Success/Failure Enumeration Code

4. DisposeStreamView
a. Input: A JSON containing the Stream URI that has to be disposed
b. Output: A JSON Object with Success/Failure Enumeration Code

GUI Mock-ups:
Not applicable

Responsible Partner(s)/Developer(s):
Developer:

 Panagiotis Gouvas <pgouvas@ubitech.eu> (UBITECH): Nexus(X), GIT(X),
Jenkins(X)

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 24 / 76

2.3.1.7 Linking Component

Linking Component
(falcon-linking-module)
Module type:
☒ VOP Core REST service

☐ Application/UI level tool

☐ PUI Wrapper

☐ Other

Description of Main Responsibilities of this Module:
The scope of the linking component is to align two (or more) semantic concepts that
derive from two distinct ontologies using a relationship that is declared either in an upper
ontology or in one of the two ontologies. This process ends up in a linked data dataset

Interfaces:
Methods:

2. RegisterOntology
a. Input: A JSON Object that included an Ontology along with the Ontology

format
b. Output: A JSON Object with Success/Failure Enumeration Code

3. AddMapping
a. Input: A JSON Object that includes two semantic concepts from Ontolo-

gies that are already registered
b. Output: A JSON Object with Success/Failure Enumeration Code

4. getMappigns
a. Input: A JSON Object that includes the request
b. Output: A JSON Object that contains a Success/Failure Code along with

an array of the mappings

GUI Mock-ups:
Not applicable

Responsible Partner(s)/Developer(s):
Developer:

 Panagiotis Gouvas <pgouvas@ubitech.eu> (UBITECH): Nexus(X), GIT(X),
Jenkins(X)

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 25 / 76

2.3.1.8 Triple Store

Triple Store
(falcon-triplestore-component)
Module type:
☒ VOP Core REST service

☐ Application/UI level tool

☐ PUI Wrapper

☐ Other

Description of Main Responsibilities of this Module:
This module is responsible for the persistency of the RDF triples for knowledge repre-
sentation in the frame of FALCON. Also, the persistency engine will be used for
knowledge inferencing since the engine will be able to respond to semantic queries.
Apache Fuseki will be used as a substrate technology.

Interfaces:
Methods:

1. addTriple
a. Input: A JSON Object that contains an RDF triple along with the format-

metadata of the triple
b. Output: A JSON Object that contains a Success/Failure Code of the in-

sertion
2. executeSPARQLQuery

a. Input: A JSON Object that contains a SPARQL-properly formated query
b. Output: A JSON Object that contains a Success/Failure Code along with

a list of the RDF results

GUI Mock-ups:
Not applicable

Responsible Partner(s)/Developer(s):
Developer:

 Panagiotis Gouvas <pgouvas@ubitech.eu> (UBITECH): Nexus(X), GIT(X),
Jenkins(X)

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 26 / 76

2.3.1.9 JDBC Interface/JDBC Endpoint

JDBC Endpoint (JDBC_Interface)
(falcon-jdbc-module)
Module type:
☒ VOP Core REST service

☐ Application/UI level tool

☐ PUI Wrapper

☐ Other

Description of Main Responsibilities of this Module:
This module exposes basic relational database interface on top of any relational data-
base that is registered on the platform. It allows dynamic on boarding and graceful de-
provision of any relational database. The JDBC Endpoint is a concrete implementation
to the JDBC_Interface which will be a utilisation of the existing technology Apache
FUSEKI (see for more details D2.1).

Interfaces:
Methods:

5. Register Relational Database
a. Input: A JSON file containing the Database Registration Context
b. Output: A JSON Object with Success/Failure Enumeration Code

6. Remove Relational Database
a. Input: A JSON file containing the Database Identifier assigned during

registration
b. Output: A JSON Object with Success/Failure Enumeration Code

GUI Mock-ups:
Not applicable

Responsible Partner(s)/Developer(s):
Developer:

 Panagiotis Gouvas <pgouvas@ubitech.eu> (UBITECH): Nexus(X), GIT(X),
Jenkins(X)

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 27 / 76

2.3.1.10 Pub/sub Query Endpoint

Pub/sub Query Endpoint
(falcon-pubsub-component)
Module type:
☒ VOP Core REST service

☐ Application/UI level tool

☐ PUI Wrapper

☐ Other

Description of Main Responsibilities of this Module:
This component will be used in order to facilitate all the asynchronous communication
within the project. It will act as a queue and will allow subscribers to send and receive
messages through predefined topics. ActiveMQ will be used as a substrate technology
(see for more details D2.1).

Interfaces:
Methods:

1. CreateTopic
a. Input: A JSON Object that contains a new TOPIC that will be supported

by the queue
b. Output: A JSON Object that contains a Success/Failure Code

2. RegisterToTopic
a. Input: A JSON Object that contains the desired TOPIC that the invoker

wishes to register along with the invoker metadata
b. Output: A JSON Object that contains a Success/Failure Code

3. UnRegisterFromTopic
a. Input: A JSON Object that contains the desired TOPIC that the invoker

wishes to unsubsribe along with the invoker metadata
b. Output: A JSON Object that contains a Success/Failure Code

4. PublishToTopic
a. Input: A JSON Object that contains the message that will be put on the

queue
b. Output: A JSON Object that contains a Success/Failure Code

GUI Mock-ups:
Not applicable

Responsible Partner(s)/Developer(s):
Developer:

 Panagiotis Gouvas <pgouvas@ubitech.eu> (UBITECH): Nexus(X), GIT(X),
Jenkins(X)

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 28 / 76

2.3.1.11 SPARQL Endpoint

SPARQL Endpoint
(falcon-service-sparql-module)
Module type:
☒ VOP Core REST service

☐ Application/UI level tool

☐ PUI Wrapper

☐ Other

Description of Main Responsibilities of this Module:
The specific module offers augmented semantic query capabilities on top of the triple
store. As already noted, the triple store already offers SPARQL querying capabilities;
however the existing module offers reasoning extensions. This module will be a utilisa-
tion of the existing technology Apache FUSEKI (see for more details D2.1).

Interfaces:
Methods:

1. ExecuteReasoningQuery
a. Input: A JSON containing the query in a SQRQL-conformant format
b. Output: A JSON Object with Success/Failure Enumeration Code

GUI Mock-ups:
Not applicable

Responsible Partner(s)/Developer(s):
Developer:

 Panagiotis Gouvas <pgouvas@ubitech.eu> (UBITECH): Nexus(X), GIT(X),
Jenkins(X)

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 29 / 76

2.3.2 FALCON PUI Wrappers
FALCON PUI Wrappers is a collection of wrappers whereby a wrapper aims to extract information of a
specific kind of data source. The objective is to achieve the interoperability in the overall FALCON VOP.
The contained wrappers are presented and explained in detail.

2.3.2.1 PEID Wrappers

PEID Wrapper
(Part of falcon-service-semanticfederationmodule)
Module type:
☐ VOP Core REST service

☐ Application/UI level tool

☒ PUI Wrapper

☐ Other

Description of Main Responsibilities of this Module:
The PUI Wrapper collects data from sensors, which are provided as not streaming data
and maps it onto the FALCON Ontology. Thus, it creates an Abox for new available data
and forward this Abox to the overall Data Federation Module which enables the commit
to the Triple Store and achieve therefore, the digital continuity for all different FALCON
modules. In doing so, the existing autonomy of sensors will not be violated and changes
in sensors can be compensated.
Interfaces:
Methods:

1. Initialize
a. Input: Java InputStream of the property file
b. Output: void

2. query
a. Input: Java Object containing current Abox and requested concepts and

properties
b. Output: Abox

3. insert
a. Input: Abox
b. Output: void

GUI Mock-ups:
This module is a micro-service and offers only a REST interface. The corresponding
GUI mock-ups to configure this micro-service is located in VOP PUI Manager

Responsible Partner(s)/Developer(s):
Developer:

 Marco Franke <fma@biba.uni-bremen.de> (BIBA): Nexus(X), GIT(X), Jen-
kins(X)

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 30 / 76

 Quan Deng <dqu@biba.uni-bremen.de> (BIBA) : Nexus(X), GIT(X), Jenkins(X)

2.3.2.2 PEID Stream Wrappers

PEID Stream Wrappers
(falcon-streamwrapper-module)
Module type:
☐ VOP Core REST service

☐ Application/UI level tool

☒ PUI Wrapper

☐ Other

Description of Main Responsibilities of this Module:
This module will be used in order to semantically uplift an existing sensor stream to a
semantic stream which is aligned with the FALCON Ontology. The result of the
‘uplifting’ procedure will be propagated to the Triple Store that was mentioned above. It
is part of the DataRefinement specific development activities (see for more details D2.1).

Interfaces:
Methods:

1. RegisterStream
a. Input: A JSON Object that registers a sensor-binarystream which will be

processed
b. Output: A JSON Object that contains a Success/Failure Code

2. ProvideMapping
a. Input: A JSON Object that provides a mapping which will transform the

binary stream to proper CSV file format
b. Output: A JSON Object that contains a Success/Failure Code

3. getBufferedOutput
a. Input: A JSON Object that contains transformed CSV payload
b. Output: A JSON Object that contains a Success/Failure Code

GUI Mock-ups:
Not applicable

Responsible Partner(s)/Developer(s):
Developer:

 Panagiotis Gouvas <pgouvas@ubitech.eu> (UBITECH): Nexus(X), GIT(X),
Jenkins(X)

mailto:dqu@biba.uni-bremen.de

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 31 / 76

2.3.2.3 Social Media Wrappers

Social Media Wrapper
(Part of falcon-service-semanticfederationmodule)
Module type:
☐ VOP Core REST service

☐ Application/UI level tool

☒ PUI Wrapper

☐ Other

Description of Main Responsibilities of this Module:
The SocialMedia Wrapper collects data from social media, which are provided as not
streaming data and maps it onto the FALCON Ontology. Thus, it creates an Abox for
new available data and store this data in a Triple Store. Incoming information request
will be replied on basis of the already extracted knowledge and will be forwarded as
Abox to the overall Data Federation Module. Then, it enables the commit to the FAL-
CON Triple Store and achieves the digital continuity for all different FALCON modules.
In so doing, the existing autonomy of social media will not be violated and changes can
be compensated in social media.

Interfaces:
Methods:

1. Initialize
a. Input: Java InputStream of the property file
b. Output: void

2. query
a. Input: Java Object containing current Abox and requested concepts and

properties
b. Output: Abox

GUI Mock-ups:
This module is a micro-service and offers only a REST interface. The corresponding
GUI mock-ups to configure this micro-service is located in VOP PUI Manager

Responsible Partner(s)/Developer(s):
Developer:

 Marco Franke <fma@biba.uni-bremen.de> (BIBA): Nexus(X), GIT(X), Jen-
kins(X)

 Quan Deng <dqu@biba.uni-bremen.de> (BIBA) : Nexus(X), GIT(X), Jenkins(X)

mailto:dqu@biba.uni-bremen.de

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 32 / 76

2.3.2.4 Social Media Stream Wrappers

Social Media Stream Wrappers
(TBD)
Module type:
☐ VOP Core REST service

☐ Application/UI level tool

☒ PUI Wrapper

☐ Other

Description of Main Responsibilities of this Module:
This module is responsible for the usage of public information that exists in social media
in order to perform NLP analysis on top of it. The output of this analysis is the generation
of RDF triples that will be propagated to the Triple store. It is part of the DataRefinement
specific development activities (see for more details D2.1).

Interfaces:
Methods:

1. RegisterSocialMediaSource
a. Input: A JSON Object that contains information about a social media

source which will be processed
b. Output: A JSON Object that contains a Success/Failure Code

2. AddProcessConfiguration
a. Input: A JSON Object that contains NLP configuration (e.g. keywords)

that will be used to perform sophisticated analysis
b. Output: A JSON Object that contains a Success/Failure Code

3. getProcessedOutput
a. Input: A JSON Object that contains the output of an analysis in a CSV

format
b. Output: A JSON Object that contains a Success/Failure Code

GUI Mock-ups:
Not applicable

Responsible Partner(s)/Developer(s):
Developer:

 Panagiotis Gouvas <pgouvas@ubitech.eu> (UBITECH): Nexus(X), GIT(X),
Jenkins(X)

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 33 / 76

2.3.2.5 Legacy System Wrappers

Legacy System Wrappers
(Part of falcon-service-semanticfederationmodule)
Module type:
☐ VOP Core REST service

☐ Application/UI level tool

☒ PUI Wrapper

☐ Other

Description of Main Responsibilities of this Module:
The Legacy System Wrapper collects data from legacy systems, which are provided as
not streaming data and maps it onto the FALCON Ontology. Thus, it creates an Abox
for new available data and forward the resulting Abox to the Data Federation Module. It
allows committing the aggregated version of the legacy system information to the Tri-
ple Store and achieves the digital continuity for all different FALCON modules. In so
doing, the existing autonomy of legacy systems will not be violated and changes in leg-
acy systems can be compensated. The Legacy System Wrapper represents not only
one kind of wrapper, but rather selects different kinds of wrappers, which focus on the
interoperability of legacy systems.

Interfaces:
Methods:

1. Initialize
a. Input: Java InputStream of the property file
b. Output: void

2. query
a. Input: Java Object containing current Abox and requested concepts and

properties
b. Output: Abox

3. insert
a. Input: Abox
b. Output: void

GUI Mock-ups:
This module is a micro-service and offers only a REST interface. The corresponding
GUI mock-ups to configure this micro-service is located in VOP PUI Manager

Responsible Partner(s)/Developer(s):
Developer:

 Marco Franke <fma@biba.uni-bremen.de> (BIBA): Nexus(X), GIT(X), Jen-
kins(X)

 Quan Deng <dqu@biba.uni-bremen.de> (BIBA) : Nexus(X), GIT(X), Jenkins(X)

mailto:dqu@biba.uni-bremen.de

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 34 / 76

2.3.2.6 Structured Data Source Wrappers

Structured Data Source Wrappers
(falcon-service-structured-data-source-wrappers)
Module type:
☐ VOP Core REST service

☐ Application/UI level tool

☒ PUI Wrapper

☐ Other

Description of Main Responsibilities of this Module:
This module will semantically uplift an existing structured data source to a semantic
stream, which is aligned with the FALCON Ontology. The result of the ‘uplifting’ proce-
dure will be propagated to the Triple Store that was mentioned above. It is part of the
DataRefinement specific development activities (see for more details D2.1).

Interfaces:
Methods:

1. RegisterDataSource
a. Input: A JSON Object that registers a structured datasource which will

be processed
b. Output: A JSON Object that contains a Success/Failure Code

2. ProvideMapping
a. Input: A JSON Object that provides a mapping which will transform the

elements of the datasource to proper CSV input
b. Output: A JSON Object that contains a Success/Failure Code

3. getStructuredOutput
a. Input: A JSON Object that contains transformed CSV output
b. Output: A JSON Object that contains a Success/Failure Code

GUI Mock-ups:
Not applicable

Responsible Partner(s)/Developer(s):
Developer:

 Panagiotis Gouvas <pgouvas@ubitech.eu> (UBITECH): Nexus(X), GIT(X),
Jenkins(X)

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 35 / 76

2.3.3 FALCON Collaborative PSS Design Solution
FALCON Collaborative PSS Design Solution includes a set of modules to help the management and utiliza-
tion of the interoperable knowledge and data for carrying out individual tasks. In this section, the modules
in the group FALCON Collaborative PSS Design Solution are presented and explained in detail.

2.3.3.1 Virtual Open Platform Login Widget

Login Service
(TBD)
Module type:
☐ VOP Core REST service

☒ Application/UI level tool

☐ PUI Wrapper

☐ Other

Description of Main Responsibilities of this Module:
This module allows the access to the Virtual Open Platform. It communicates with the
authorization and access control service. Different users will have different degree of
access in the system. This authorization will be managed by the authorization and ac-
cess control service.
Interfaces:
Methods:

1. getUserId
a. Input: JSON user credentials
b. Output: -

GUI Mock-ups:

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 36 / 76

Figure 4 Login View of FALCON VOP

Reaching the address http://demo.holonix.it/vofalcon/index.zul the user with the access
right can accede at the system.

Responsible Partner(s)/Developer(s):
Developer:

 Weian Xu <weian.xu@holonix.it> (HOLONIX): Nexus(-), GIT(X), Jenkins(-)

http://demo.holonix.it/vofalcon/index.zul

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 37 / 76

2.3.3.2 Collaborative Environment

Collaborative Environment
(TBD)
Module type:
☐ VOP Core REST service

☒ Application/UI level tool

☐ PUI Wrapper

☐ Other

Description of Main Responsibilities of this Module:
The Collaborative Environment is a dynamic system that allows improving collaboration
and information sharing between two or more actors in a physical context (a meeting
room) and/or in a virtual way (between two or several meeting rooms or single comput-
ers). The system allows the creation of virtual rooms with dedicated topics. Each of these
rooms can have specific participants with different access rights. Within each room,
many applications can be embedded to provide a wide set of services. In addition, web-
based tools provided by third parties can be embedded into rooms set up using the
Collaborative Environment. It supports concurrent and asynchronous work in the same
virtual rooms, and collaboration with team members both in the same physical place and
at a distance. Its key feature is the implementation of visual management which is a
clear, simple and effective way of organizing and presenting work. Its user interface is
designed to be user-friendly and to clearly organize and visualize many documents, ap-
plications, tools and objects in the same room. Moreover, users can customize how tools
and applications are visualized in their individual rooms. This includes removing objects,
adding new tools and applications, changing the position of available tools by simple
drag and drop and inviting new participants to join the room. Moreover, the Collaborative
Environment is able to interact with 3rd party System using open APIs. The Idea Man-
ager, Data Analysis module and other FALCON web-based tools can be used within it.
Interfaces:
Methods:

1. PostCreateNewWidget
a. Input: JSON specifies widget parameters
b. Output: -

2. PostCreateNewObeya
a. Input: Obeya name as parameter
b. Output: -

3. PostObeya-WidgetAssociation
a. Input: Obeya Name and Widget Name as parameters
b. Output: -

GUI Mock-ups:
In the central column of the main page, the Collaborative Environment shows the list of
dashboards on which the user can accede. Selecting one dashboard the user can visu-
alize the list of widgets available in the selected room. Moreover, it’s possible to create

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 38 / 76

a new dashboard, modify the contents of the already existing one (including adding or
removing widgets), as well as authorizing or denying access to specific users.

Figure 5 Dashboard of the FALCON VOP

Once the user accedes one specific dashboard, he/she will be able to interact with tools
placed in that room, modify the dashboard visualization structure (e.g. number of col-
umns, widget visualized, dimensions of each tool), and see the people connected to the
room during the same time.

Figure 6 Example widgets of FALCON VOP

Responsible Partner(s)/Developer(s):
Developer:

 Weian Xu <weian.xu@holonix.it> (HOLONIX): Nexus(-), GIT(X), Jenkins(-)

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 39 / 76

2.3.3.3 VOP PUI Manager

VOP PUI Manager
(falcon-ui-puimanager)
Module type:
☐ VOP Core REST service

☒ Application/UI level tool

☐ PUI Wrapper

☐ Other

Description of Main Responsibilities of this Module:
The objective of the PUI Manager is to enable the configuration of a FALCON module,
which stores its settings within the FALCON VOP. This module implements the basic
functionality to create and load configurations of PUI wrappers. The specific configura-
tion wizards will be implemented in other modules (2.3.3.3.X). The objective of these
wizards is to support the user in configuring and maintaining the tools.

Interfaces:
Methods:

1. updateConfiguration
a. Input: Java object holding the settings
b. Output: The information whether it could be updated

GUI Mock-ups:
This module has no graphical user interface

Responsible Partner(s)/Developer(s):
Developer:

 Marco Franke <fma@biba.uni-bremen.de> (BIBA): Nexus(X), GIT(X), Jen-
kins(X)

 Quan Deng <dqu@biba.uni-bremen.de> (BIBA) : Nexus(X), GIT(X), Jenkins(X)

mailto:dqu@biba.uni-bremen.de

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 40 / 76

2.3.3.4 Mediator Manager

Mediator Manager
(falcon-ui-mediatormanager)
Module type:
☐ VOP Core REST service

☒ Application/UI level tool

☐ PUI Wrapper

☐ Other

Description of Main Responsibilities of this Module:
This module is a specialization of the general VOP GUI manager and focusses on the
configuration of the Data Federation Module, PEID Wrapper, Social Media Wrappers
and Legacy System Wrapper by the user. For that purpose, module specific widget will
be developed and offered in the overall VOP platform

Interfaces:
Methods:

1. updateConfiguration
a. Input: Java object holding the settings
b. Output: The information whether it could be updated

GUI Mock-ups:
The following screenshots show how a wrapper configuration could be added. For that
purpose, the user first selects the type of data source to be configured. Each kind of data
source requires different amount of information. Then, all data source specific infor-
mation by the user will be collected with a wizard. An example of the wizard during the
configuration of a social media related data source is shown in the second screenshot.

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 41 / 76

Figure 7 Widget for wrapper selection

Figure 8 Configuration widget of social media wrapper

Responsible Partner(s)/Developer(s):
Developer:

 Marco Franke <fma@biba.uni-bremen.de> (BIBA): Nexus(X), GIT(X), Jen-
kins(X)

 Quan Deng <dqu@biba.uni-bremen.de> (BIBA) : Nexus(X), GIT(X), Jenkins(X)

mailto:dqu@biba.uni-bremen.de

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 42 / 76

2.3.3.5 Stream View Manager

Stream View Manager
(falcon-stream-view-manager)
Module type:
☐ VOP Core REST service

☒ Application/UI level tool

☐ PUI Wrapper

☐ Other

Description of Main Responsibilities of this Module:
The stream manager is responsible to manage the streaming sources that are registered
at FALCON VOP. It is the module that along with the RDFizer manage holistically the
streaming sources and enables the extraction and storage of information in the Triple
Store. It is part of the FALCON Daemon specific development activities (see for more
details D2.1).

Interfaces:
The Stream View Manager uses the interfaces from the RDFizer to configure the
stream data sources.

GUI Mock-ups:
Not applicable

Responsible Partner(s)/Developer(s):
Developer:

 Panagiotis Gouvas <pgouvas@ubitech.eu> (UBITECH): Nexus(X), GIT(X),
Jenkins(X)

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 43 / 76

2.3.3.6 FALCON KBE Mapping Tool

Mapping tool for PUI related Design
(KBE PUI Mapping service)
Module type:
☐ VOP Core REST service

☒ Application/UI level tool

☐ PUI Wrapper

☐ Other

Description of Main Responsibilities of this Module:
Several proprietary KBE frameworks exist on the market, which enable an easy and fast
creation of design variants (CAD models) based on a variety of input parameter sets.
But due to lack of a framework independent standard itself, a direct linkage of Lifecycle
related information such as usage parameters is not feasible.
With this background the FALCON team is developing and promoting KbeML, a model-
ling language derived from SysML (as an extension), which will allow a formal mapping
of usage information to the product model dependencies, if the KbeML elements are
enhanced accordingly.
This module defines a mapping tool to link PUI to product development knowledge. The
tool enables to create linkages between parameters/values of commercial tools such as
CAD and a KbeML model, which has been designed in a modelling framework (and
stored as XMI file). The KbeML model itself provides the capabilities to handle the usage
information. A selection of appropriate bearings may serve as a sample: The bearing
itself is typically chosen by some geometry related parameters and the bearing-constant.
The bearing constant can be expressed by an equation having an “environmental tem-
perature” as one of several input parameters. In line with FALCON objectives users may
want to map this “environmental temperature” to a data set of a sensor (“Temp-Sen-
sor_01”). The tool allows a manual mapping between both types of parameters. The tool
relies on XML/XMI files, to enable the data exchange.
Interfaces:
Methods:

n.a. => The module will be based upon handling of XML-files

GUI Mock-ups:
The mapping tool will allow a manual assignment between the development related
parameters and the PUI information. As illustrated below a parameter such as the “ex-
ternal temperature” can mapped to a specific sensor called “Temp-Sensor_01” and the
values can be exchanged based upon this definition.

Using KbeML the “external temperature” parameter can become part of equations and
rules (e.g. to reflect a thermal expansion of parts/materials). The mapping itself will al-
low the automated transfer of values. For this purpose, the data transfer can be con-
trolled by three options: 1. CAD data will be transferred into KbeML models; 2. KbeML

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 44 / 76

data will be transferred into CAD files; 3 Product usage data will be transferred into
KbeML models.

Figure 9 KBE parameter mapping widget of FALCON VOP

The GUI will provide the capability to manage the parameter mappings (to avoid dou-
ble work). The mapping can be stored in so called mapping files, which include a refer-
ence to a source file (e.g. a CAD parameter file) and the mappings itself.

Users can create, open adapt and store mapping files. If engineering knowledge has
been formalized in KbeML beforehand, the user can easily switch the mapping to
adapt the product usage information:

1. Open the mapping file;
2. Search/select “external temperature”;
3. : adapt the mapping for “external temperature” from “Temp-Sensor_01” to

Temp-Sensor_02”.
4. Initiate data transfer from “Data set to KBE”
5. Save the file for future use.

Figure 10 Open mapping file in KBE widget of FALCON VOP

Responsible Partner(s)/Developer(s):
Developer:

 Patrick Klein <klp@bba.uni-bremen.de> (BIBA): Nexus(X), GIT(X), Jenkins(X)
 Marco Franke <fma@biba.uni-bremen.de>

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 45 / 76

2.3.3.7 FALCON KCCM Management Tool

KCCM Management Tool
(falcon-service-KCCM)
Module type:
☐ VOP Core REST service

☒ Application/UI level tool

☐ PUI Wrapper

☐ Other

Description of Main Responsibilities of this Module:
The KCCM Management Tool is a user interface for KCCM configuration and status
monitoring. The core idea is to provide an environment which allows to define and pro-
cess a sequence of functions provided as methods by KCCM (ref. to 2.2.1.5 section).
To enable a clearly arranged User Interface the processing sequence is envisioned to
be implemented in form of configuration-files (e.g. “KCCM_sample_config.xml), which
can be uploaded and processed afterwards. The user will have a status window showing
the process steps and will be able to pause/stop the process. The processing output will
be stored by the KCCM in the triple-store and thus provided to other FALCON modules
afterwards.
The configuration-file syntax will be based upon the defined KCCM methods. Sequences
will be defined by word wraps and semicolon (similar to script languages); e.g.:

Get_average_for_period(x,y,z);

Get_average();

For data access the module will offer two options: selection of data-sets before pro-
cessing the config-file or inclusion of SPAQL queries directly into the configuration-files.
In this case the methods will include the required SPARQL syntax, which may be defined
and tested with Query Builder in advance (2.2.3.5).

As outlined in section 2.2.1.5 the KCCM module will encapsulate output results in a json
object and store results in the triple store at the same time. To enable users a first look
into the results the KCCM Status Console will provide a result view on the data (ref. to
mock-up below).

Interfaces:
The KCCM Management Module will not have an API (it will not provide methods to be
used by other services). However, the module will of course have a direct connection
to KCCM itself and use the methods provided by KCCM (section 2.3.1.5).
GUI Mock-ups:
Left part of the mock-up enables the user to select the data-set and the configuration-
file. The Start button will initiate processing and activate the status monitoring. The latter
is positioned on the left side. The progress is visualized by checkmarks. The pause but-
ton on the bottom left will interrupt the process.

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 46 / 76

Figure 11 KCCM Status Console widget of FALCON VOP

The status table (left side) visualizes the different types of calculations that can be per-
formed, namely calculated columns (displayed as type CC) and variables (displayed as
type V). In addition, used inputs and outputs are outlined as variable names or field-
names respectively.
In the given sample the config-file is processed first on the instances of the property
“Temperature” of the “water_Injection” concept. The array with values is processed by
the “arithmetic mean” method providing an output of type variable. The output is named
“average temperature” and the checkmark indicates it is already processed.
In a next step the instances of the property “pressure” of the concept “water_Injection”
are analyzed with the method max_value to identify the value for the max. pressure
variable which represents the maximum pressure of the column.

Figure 12 KCCM Result widget of FALCON VOP

Responsible Partner(s)/Developer(s):
Developer:

 Patrick Klein <klp@bba.uni-bremen.de> (BIBA): Nexus(X), GIT(X), Jenkins(X)
 Marco Franke <fma@biba.uni-bremen.de>

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 47 / 76

2.3.3.8 FALCON Data Export Module

Data Export Module
(TBD)
Module type:
☐ VOP Core REST service

☒ Application/UI level tool

☐ PUI Wrapper

☐ Other

Description of Main Responsibilities of this Module:
This module allows the exportation of data visualized the Data Analysis module in dif-
ferent formats: CSV, JSON, XML

Interfaces:
Methods:

1. getCSVData
a. Input: parameters
b. Output: CSV object containing the set of selected data

2. getJSONData
a. Input: parameters
b. Output: JSON object containing the set of selected data

3. getXMLData
a. Input: parameters
b. Output: XML object containing the set of selected data

GUI Mock-ups:
This module has no graphical user interface

Responsible Partner(s)/Developer(s):
Developer:

 Weian Xu <weian.xu@holonix.it> (HOLONIX): Nexus(-), GIT(X), Jenkins(-)

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 48 / 76

2.3.3.9 FALCON Idea Manager

Idea Manager
(TBD)
Module type:
☐ VOP Core REST service

☒ Application/UI level tool

☐ PUI Wrapper

☐ Other

Description of Main Responsibilities of this Module:
The Idea Manager application aims at supporting the creation and management of new
Product Service ideas within a company or within a more generic ecosystem. It can be
used to support an Open Innovation approach, where new ideas can come from different
actors (both within and outside the enterprise), can be promoted and commented by
peers. These new ideas are then selected by the company, after multiple criteria analysis
to become new “concepts” that enter the complex process (beyond the scope of the Idea
Manager but supported by the other FALCON or external tools) to transform them into
(physical) prototypes, ready for a validation by real end users (consumers). In addition
to the user interface, the Idea Manager system provides a small set of webpages that
can be easily included in the Collaboration Environment as widgets. These pages are
designed to offer dedicated interfaces to the Idea Manager for optimal access to specific
information from within the Collaboration Environment, such as viewing the ideas that
are being discussed during a collaboration meeting (e.g. an Idea Day, where people
from different locations discuss and promote together the most interesting new ideas),
voting on a concept or obtaining detail.
Interfaces:
Methods:

1. getIdeaData
a. Input: ID request indicating the idea/ideas that external systems want to

accede
b. Output: JSON indicating the idea information

2. getWidgetURL
a. Input: ID of the widget
b. Output: JSON indicating the URL of the idea widget

GUI Mock-ups:
The user can decide what to do with the tool selection between: crate new ideas, vote
or comment already presented ideas.

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 49 / 76

Figure 13 Home widget of FALCON VOP’s Product Service Design Configurator

Clicking on submit the user can create new ideas through the provision of a title, a de-
scription, the usage of some attachments as well as some tags (ontology concepts) to
facilitate the idea search.

Figure 14 New Idea Creation widget of FALCON VO’s Product Service Design Configurator

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 50 / 76

Clicking on vote or comments the user can rate or comments the already existing public
ideas.

Figure 15 Vote Ideas widget of FALCON VOP’s Product Service Design Configurator

Responsible Partner(s)/Developer(s):
Developer:

 Sandro Taje < sandro.taje@holonix.it > (HOLONIX): Nexus(-), GIT(X),
Jenkins(-)

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 51 / 76

2.3.3.10 FALCON Simulation and Forecasting Manager

FALCON Simulation and Forecasting Manager
(TBD)
Module type:
☐ VOP Core REST service

☒ Application/UI level tool

☐ PUI Wrapper

☐ Other

Description of Main Responsibilities of this Module:
The simulation and forecasting manager facilitates the FALCON end user in selecting
and deploying the most suitable of available software tools for predicting (i.e., simulating
or forecasting) MOL-related processes, based on given needs for life-cycle decision sup-
port, and on a given set of available input data from PEID (and/or possibly from social
media).
It allows selecting/defining the envisioned decision support (e.g., “obtaining a forecast
of supplies consumption” or “perform what-if studies to reduce effect e by fine-tuning
design parameters x, y, z”), and querying/filtering available input data, and it supports
preparation of the selected data to a format that can be read by the prediction software.
At least part of the considered software will be off-the-shelf, externally provided software
(especially for simulation, see especially for simulation, see 2.2.4.3), but some of it may
be available from within FALCON (especially for forecasting).
The Simulation and Forecasting Manager is provided as a proof-of-concept to show
that one or more combinations of a need for decision support, available input data and
available approaches can provide predictive information or knowledge that fulfils the
specified need, and is thus valuable to the end user. Developing the Simulation and
Forecasting Manager as readily deployable software is not foreseen within the project,
but critical algorithms will be implemented in a form that allows testing.

Interfaces:
Methods:

1. MatchNeedsToResources
a. Input: User selection of characteristics that define the envisaged deci-

sion support; User selection of input data from SPARQL Endpoint; user
input of filtering criteria for data; available software/tools software for pre-
diction

b. Output: Suggestion of suitable software/tools for prediction
2. PreparePredictionInputs

a. Input: User selection from selected software/tools for prediction

Output: Input file suitable for selected software/tools (e.g. time-stamped csv file)

GUI Mock-ups:

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 52 / 76

Figure 16 Configuration widget for Simulation and Forecasting Manager of FALVON VOP

The GUI is expected to allow selecting/defining the envisaged decision support, and
querying/filtering available input data, and to support preparation of the selected data
to a format that can be read by the prediction software.

Responsible Partner(s)/Developer(s):
Developer:

 Wilfred van der Vegte <w.f.vandervegte@tudelft.nl> (TU Delft): Nexus(-),
GIT(-), Jenkins(-)

 Fatima-Zahra Abou Eddahab <f.aboueddahab@tudelft.nl>(TU Delft): Nexus(-),
GIT(-), Jenkins(-)

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 53 / 76

2.3.3.11 FALCON PUI Alert Module

PUI Alert Module
(TBD)
Module type:
☐ VOP Core REST service

☒ Application/UI level tool

☐ PUI Wrapper

☐ Other

Description of Main Responsibilities of this Module:
This module is used to check the status of a particular product presenting detected
alarms.

Interfaces:
Methods:

1. getProductAlarms
a. Input: product ID as parameter
b. Output: Object indicating the list of alarms for the selected product

2. getAllAlarms
a. Input: -
b. Output: Object indicating the whole list of alarms

GUI Mock-ups:

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 54 / 76

Figure 17 Example of the FALCON VOP’s PUI Alert widget

The mock-up presents the conditions of working products. It shows some indicators re-
garding the products, in this case a washing machine, with some indicators like tem-
perature, pressure and drum RPM. Moreover, in the top is possible to visualise real
time warnings provided from the monitored product.

Responsible Partner(s)/Developer(s):
Developer:

 Sandro Taje <sandro.taje@holonix.it> (HOLONIX): Nexus(-), GIT(X), Jenkins(-)

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 55 / 76

2.3.3.12 FALCON PUI Query Builder

PUI Query Builder
(falcon-service-pui-query-builder)
Module type:
☐ VOP Core REST service

☒ Application/UI level tool

☐ PUI Wrapper

☐ Other

Description of Main Responsibilities of this Module:
The PUI Query Builder is a web application, which enables the creation of SPARQL
queries. The objective is to create a graphical user interface, which enables a tool-sup-
ported creation of SPARQL queries. The support shall enable that users can create
SPARQL queries without needing to have an understanding of SPARQL. For that pur-
pose, the object oriented perspective of PUI is used to enable the selection of concepts
and properties and a corresponding creation of SPARQL queries in the background

Interfaces:
Methods:

Create Query

c. Input: The list of available wrapper configurations
d. Output: SPARQL query as JSON String

SubmitQuery

a. Input: Selected wrapper configurations and SPARQL query
b. Output: void

GUI Mock-ups:
The following mock up shows how a user can create SPARQL queries without the
knowledge of the syntax and semantic of SPARQL.

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 56 / 76

Figure 18 Query Builder widget of FALCON VOP

Responsible Partner(s)/Developer(s):
Developer:

 Marco Franke <fma@biba.uni-bremen.de> (BIBA): Nexus(X), GIT(X), Jen-
kins(X)

 Quan Deng <dqu@biba.uni-bremen.de> (BIBA) : Nexus(X), GIT(X), Jenkins(X)

mailto:dqu@biba.uni-bremen.de

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 57 / 76

2.3.3.13 FALCON Data Visualisation Module

Data Visualization and Exportation module
(TBD)
Module type:
☐ VOP Core REST service

☒ Application/UI level tool

☐ PUI Wrapper

☐ Other

Description of Main Responsibilities of this Module:
The Data Analysis and Exportation module will allow users to select the kind of concepts
he/she would like to visualize historical or punctual information through four kind of
charts: Histograms, Linear Charts, Pie Charts as well as forecast. In case of simple data
the module will directly contact the Triple Store Webservices in order to accede at the
updated list of concepts and related data. In case of mathematical calculations (e.g.
median, average, forecast analysis) it will contact the KCCM Module. This module will
simplify the data analyzing through a visive approach. Finally, data shown could be ex-
ported for further analysis with other systems.

Interfaces:
Methods:

1. GetVisualizedData
a. Input: -
b. Output: text file indicating the list of visualized data

GUI Mock-ups:
Within the module the user can select the type of chart to see from the list, the initial
and final date for the analysis as well as the concepts he/she would like to visualize.
Moreover, the user can visualize the chart or visualize the data in table view and ex-
port the visualized data for further analysis.

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 58 / 76

Figure 19 Data Analysis widget of FALCON VOP

Responsible Partner(s)/Developer(s):
Developer:

 Weian Xu <weian.xu@holonix.it> (HOLONIX): Nexus(-), GIT(X), Jenkins(-)

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 59 / 76

2.3.4 3rd Party Software
3rd Party Software provides a set of modules to enable the interaction with 3rd party software. In this section,
the modules in the group 3rd Party Software are presented and explained in detail.

2.3.4.1 3rd Party LCA Tools

3rd Party LCA Tools
(falcon-ui-lca-module)
Module type:
☐ VOP Core REST service

☒ Application/UI level tool

☐ PUI Wrapper

☐ Other

Description of Main Responsibilities of this Module:
It assesses environmental impacts associated with the entire Product Life Cycle from
cradle to grave. It comes to play the roleof an environmental impacts estimation tool for
the business partners depending on the business scenarios and can compare these
results. It extracts the relevant data such as exhaustion of resources from the repository,
and automatically tune into the parameters considering the business scenario. It pro-
vides the basic schema to represent Product Life Cycle, processes, resources and so
on.

It aims at implementation of analysis, evaluation and optimization of environmental im-
pacts for smart innovators in the field of sustainability suppliers. Further on, depending
on the definition of the study scope, it considers not only direct activities but also indirect
activities such as purchased goods and services, and so on.
Interfaces:
Methods:

1. Query
a. Input: SPARQL query to get environmental relevant data

Output: Float representing the String representing the analysis result

GUI Mock-ups:

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 60 / 76

Figure 20 Configuration widget of Life cycle Assessment of FALCON VOP

Figure 21 Result widget of Life cycle Assessment of FALCON VOP

To define the study scope, UI provides the screen to select a business scenario with
the production location and usage location. In addition, it supports to tune specific envi-
ronment parameters for accurate results.

Responsible Partner(s)/Developer(s):
Developer:

 Sangje Cho <sangje.cho@epfl.ch> (EPFL): Nexus(-), GIT(-), Jenkins(-)

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 61 / 76

2.3.4.2 3rd Party CAx Tools

CAx Tools
N/A
Module type:
☐ VOP Core REST service

☒ Application/UI level tool

☐ PUI Wrapper

☐ Other

Description of Main Responsibilities of this Module:
The abbreviation CAx is covering the different support systems in design, production
and other phases of product lifecycle management (PLM): such as Computer Aided
design (CAD); Computer Aided engineering (CAE) or Computer Aided manufacturing
(CAM), and other. Due to the varying purpose a high diversity of systems and vendors
are established in the market. Even though those systems are usually based on their
proprietary and encapsulated internal structure and providing their own subset of inter-
faces, three different types for system-to-system communication and information ex-
change have been identified:

Import & Export Functions:
As outlined in the screenshots below the import and export functionality may differ from
system to system, but usually parameters can be imported & exported as well as lists
such as a bill of material. Of course the geometrical models can be exported to neutral
standards (such as STEP/IGES) either. But usually the inheriting knowledge gets lost
with the export.
Script & Macro-Languages:
Many systems provide some sort of macro programing language support (such as vis-
ual basic). The main purpose of the scripts macros is to enable some sort of automa-
tion within the application (the approach can be compared to macro’s in MS office).
Application programming interfaces:
This access is often limited to “expert users”, since extended licences are usually re-
quired, as well as specific knowledge on the internal structure of the system. The latter
is demanding for documentation which is usually not accessable for free in those sys-
tems.

Interfaces:
Methods:

N/A

GUI Screenshots:
In the following, a screenshot of commercial CAD Systems is provided to visualize typi-
cal access to CAx systems (instead of mock-ups). The screenshot outlines parameter-

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 62 / 76

import capabilities of the commercial CAD software INVENTOR (from Autodesk). The
software allows a parameter export into an XML file and vice versa an parameter im-
port from an XML file, if the file is structured accordingly. It has to be noted that “pa-
rameter import & export” can be interpreted more precisely as a “value import & ex-
port” for predefined parameters. Such XML files can be controlled with the mapping
tool of the FALCON VOP.

Figure 22 Example of CAD relevant parameters

As outlined above the way to access parameters in CAx systems differs from system
to system. For comparison, the following screenshot from CAD system CATIA illus-
trates the access to parameters in a similar but different way. The software can syn-
chronize with XLS or coma separated (csv) files. Parameters are transferred to Field-
names (column-names) of tables, which offers the possibility to handle an array of val-
ues for a parameter.

Figure 23 Parameter export capabilities in CATIA

Responsible Partner(s)/Developer(s):

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 63 / 76

Developer:

 Patrick Klein <klp@bba.uni-bremen.de> (BIBA): Nexus(r-), GIT(-), Jenkins(-)

2.3.4.3 3rd Party Simulation Tools

3rd Party Simulation Tools
(TBD)
Module type:
☐ VOP Core REST service

☒ Application/UI level tool

☐ PUI Wrapper

☐ Other

Description of Main Responsibilities of this Module:
These tools are software packages already available on the market, or from open-
source repositories. For a selected set of one or more simulation tools, the 3rd Party
Simulation Tools will produce suitable input data based on which the end user will be
able to run simulations using the 3rd Party Simulation Tools, which will support them in
their decision making – e.g., (re)design decisions, (re)programming decisions, mainte-
nance decisions.

Interfaces:
Interfaces depend on particular software package.

Inputs: data file in appropriate format, produced by 3rd Party Simulation Tools
Outputs: Graphics, animations and/or data files displaying predictive knowledge to
FALCON end user.

GUI Mock-ups:
N/A (external)

GUIs depend on particular software package
N/A (external)

Responsible Partner(s)/Developer(s):
Developer:

Already developed externally

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 64 / 76

2.3.4.4 Other Tools
The current evaluation of the requirements has identified that no other external tools (apart from the above
mentioned) need to be integrated in the FALCON VOP. The ongoing development and evaluation activities
could, however, result in findings which indicate the necessity to integrate additional tools which are not
simulation, CAD or LCA tools. For this purpose, the category will be applied as a placeholder.

2.4 Interfaces with third Party Software and APIs
The module description forms included in Section 2 supplies a first definition of the interfaces that the VOP
modules will implement internally. These interfaces will be refined and fully implemented in the context of
work package WP1, in particular in the context of task T1.4. One other important part of the VOP architecture
definition concerns integration with external and third party software systems, again of competence of task
T1.4. The general overview over the available information and material flows between FALCON VOP and
external world are shown in Figure 24.

Figure 24 Flows between FALCON VOP and external

In particular, the following ways of integrating with external systems are of relevance:

Sensors and social network data represent an important flow of information coming from the external world
is of course represented by sensors and social network data, which represent the main input flows to the
FALCON system. Integration with the sources of such information is of course implemented by the func-
tionality of the relevant wrappers described in section 2.3.2 (and subsections).

A second aspect of the integration with external and third party software concerns how data is exported from
the FALCON VOP to external applications for their consumption. Specifically, the data to external simula-
tion and forecasting software exploited in work package WP4 has to be provided. This kind of integration
often requires some heavy development work addressing specific legacy systems with their proprietary APIs
and interfaces, leading to a risk of vendor lock-in. A better approach is to identify some set of standards or

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 65 / 76

widely used data formats for data exchange and allow therefore, the transfer of information via csv or other
formats. As mentioned, the details will be analyzed and defined during task T1.4

Another mechanism we considered in order to allow external systems to integrate with the functionalities
provided by the FALCON VOP consists in the publishing of an open Application Programming Interface,
exporting VOP functionality through a set of public well-documented functions. This is what we have de-
fined as the FALCON OpenAPI. The best candidate for this is the definition of a REST interface providing
a coherent access to FALCON ’s data to external applications. This way, the possibility of integration is not
limited to those specific third party applications that might have been taken into consideration during the
FALCON project lifetime for pilot development and demonstration purposes, but can be extended in future
to other software by the development of specific “oubound” wrappers exploiting the OpenAPI in their im-
plementation.

A last but not less important aspect of integration with external system concerns the integration of the FAL-
CON authorization and access control framework with authentication and authorization data that companies
might already use in their legacy systems. Such an integration will be considered in the context of the specific
task T3.5 of Workpackage WP3, which will start in M22.

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 66 / 76

3 Technical Quality Standards
This section presents the approach adopted in FALCON to ensure that the architecture and the resulting
software modules, including all its dependencies, fulfill technical quality standards regarding performance,
reliability and efficiency. Starting with the introduction of the overall verification and validation definition,
the proposed development process as well as the applied verification and validation (V&V) are presented.
Subsequently, the criterion of performance, reliability and efficiency and its application in the FALCON
project are described in detail.

3.1 Overall approach
The technical quality will be ensured through verification and validation (V&V). The proposed ap-
proach applies the standards ISO 14756, ISO/IEC 91261 and recommendations of International Software
Testing Qualification Board to ensure the technical quality of the FALCON VOP. In general, the inter-
national literature is replete with various validation and verification definitions. FALCON adopts the
ANSI/IEEE Std 1012-2012 (IEEE 2012) definition of V&V, as presented in the following table:

Table 2 Verification & Validation

 Verification Validation

Defini-
tion

The process of providing objective evidence
that the software and its associated products
conform to requirements (e.g., for correct-
ness, completeness, consistency, accuracy)
for all life cycle activities during each life cy-
cle process (acquisition, supply, develop-
ment, operation, and maintenance); satisfy
standards, practices, and conventions during
life cycle processes; and successfully com-
plete each life cycle activity and satisfy all the
criteria for initiating succeeding life cycle ac-
tivities (e.g., building the software correctly).

The process of providing evidence that
the software and its associated products
satisfy system requirements allocated
to software at the end of each life cycle
activity, solve the right problem (e.g.,
correctly model physical laws, imple-
ment business rules, use the proper sys-
tem assumptions), and satisfy intended
use and user needs.

Question Are we building the product right? Are we building the right product?

Objec-
tive

To ensure that the product is being built ac-
cording to the requirements and design speci-
fications.

To ensure that the product actually
meets the user’s needs, the specifica-
tions were correct in the first place and
the product fulfils its intended use
when placed in its intended environ-
ment.

To meet dynamic change requests, the parallel development processes in FALCON will take advantage of
an agile approach to V&V. In the following, the proposed development process as well as the corresponding
application of an appropriate V&V approach are presented.

1 http://www.iso.org/iso/catalogue_detail.htm?csnumber=22749

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 67 / 76

3.1.1 Development Process Model
The proposed development process model is aligned to the V-model and applies aspects of the agile devel-
opment approach. In the following, the addressed V-model, the agile approach as well as the V&V proce-
dures within the development processes are described in detail.

3.1.1.1 V-Model
The V-model (see Figure 25) is an extension of the waterfall model; in fact, its left branch practically is the
waterfall model, while its right branch includes approaches/techniques for the verification and validation of
the software under development. Unit Testing, Integration Testing, System Testing, Operational Testing,
Acceptance Testing constitute members of an indicative, yet not exhaustive, list of such verification and
validation techniques. This detailed verification and validation phase are going to ensure the performance,
the reliability, the efficiency and the applicability of the solution to the given FALCON vision, which is
mandatory for a successful research project.

Figure 25 Traditional V-model (SRM Technologies 2013)

3.1.1.2 Agile Software Development Model
On the other hand, agile software development (Larman 2004) has been gaining more and more momentum
over the last few years. In contrast to the waterfall model, agile software development is based on an iterative
and incremental workflow, aiming at rapid, collaborative and flexible end-product development. The main
idea behind agile software development is seperate the main project into a larger number of relatively small
increments; each one developed in short, efficient and effective iterations.

Unlike the V-model, in agile software development, there is no specific procedure (or set of procedures)
dedicated to verification and validation. Each individual iteration involves working in all functions: planning,
requirements analysis, design, coding, unit testing, acceptance testing etc. At the end of each iteration, a
working product (regardless of its size and importance) is demonstrated to stakeholders who provide the

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 68 / 76

necessary feedback. Although there are voices suggesting that agile is inappropriate for products of sequen-
tial nature, agile software development is an efficient and effective approach, accompanied with adaptability
and predictability (Boehm and Turner 2004).

To enable a continuous, stakeholder-driven validation, general principles were carried out and concentrated,
in particular, on the adoption of a common component model and communication model for the development
of FALCON VOP modules. Technical requirements involving partners’ expertise with specific technologies
and/or integration with pre-existing software systems developed or used by partners have been examined.
The examination of technical requirements will be updated each time the requirements of the business sce-
narios changes. Java was chosen as preferred platform and programming language for the development of
the FALCON software modules and the Spring framework was selected for the implementation of the FAL-
CON Virtual Open Platform architecture. Several alternative options, in particular a REST micro-services
architecture and a central application based on the Spring framework, were considered, and consensus was
finally reached on the micro-services approach.

The chosen technical approach enables the testability of one micro-service, a set of micro-services or the
overall FALCON platform. Therefore, the full spectrum of test levels (unit tests through to system tests) are
applicable and will ensure the quality of the VOP.

3.1.1.3 Agile Methodologies in FALCON
In order to enable an efficient testing approach, the agile development approach suggests the application of
an agile methodology for software design, development and integration activities. All partners have agreed
to setup and exploit a stack of infrastructure tools allowing a process based on Continuous Integration (CI)
and Delivery principles. This set of tools includes:

 A GitLab server for the management of versioned source code for the VOP modules.

 A Sonatype Nexus repository for the management and provision of compiled modules

 A Jenkins CI server to continuously monitor changes in the modules’ source code in GitLab and
automatically rebuild modified modules and notify the developer in case something goes wrong.

 A project management tool such as Redmine or Open Project to keep track of open issues and assign
tasks to project members.

Besides the abovementioned tools, Linux container solutions like Docker and related technologies such as
Docker Compose were considered for deployment and will be included in the CI deployment workflow. The
provided virtualization will enable the delivery and maintenance of different development states to the busi-
ness cases and enables a continuous evaluation through the business partners and feedback.

The quality of the software engineering work will be ensured through the FALCON development process,
which is shown in Figure 26. This process enables the immediate detection and quick reaction of failures on
all testing levels when a developer submit a new version of his source code.

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 69 / 76

Figure 26 FALCON development process

The continuous monitoring of the FALCON software prototype quality is ensured on basis of test cases
which are executed by the continuous integration tool each time a source code change was detected. In the
following, the scheduled application of the test driven approach is presented in detail to ensure the quality
with respect to the performance (robustness and speed) and reliability (functionality and reliability). Then
the estimation process for the overall software quality by stakeholders is presented in 3.4.

3.1.2 Test Case Definition, Specification and Implementation
The abovementioned V-model as well as the FALCON development process is based on test cases to en-
sure the software quality in the development process. The following table summarizes the ongoing testing
capabilities.

Table 3 FALCON Test Strategy

Test level Test Method Coverage Test Bed Responsibility

Unit testing
Black Box MC2 : 100% Development

environment: Jenkins
Micro-service owner

White Box BC3: 70%

Integration
testing Black Box APC direct4: 100% Jenkins

Micro-service owner-
who invokes another
service APC Indirect: 50%

System test-
ing Black Box Requirement Cov-

erage: 100%
Docker instance per
business case

Business case owner

The responsibility for the specification, implementation and integration of the relevant set of test cases is
dependent on the testing level. The responsible person can choose the methods for determining the test space

2 MC: Method Coverage
3 BC: Branch coverage
4 APC: Abstract API coverage

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 70 / 76

and SUT behaviour. Common methods like equivalence partitioning, boundary value analysis, decision table
testing is recommended. The FALCON developers create no test plan how it is defined in IEEE 829-2008
but rather the developers update the amount of specified and implemented test cases each time they update
the source code on Git. The intended effect to the VOP will be classified into a testing level and determines
the test methods and the coverage to be applied.

Jenkins will create the test report automatically. For that purpose, a “Test Results Analyzer Plugin” will be
installed and used to create test reports. The generated reports will summarize the outcome of each test case
according to the build number. An example is given in Figure 27.

Figure 27 Test Results of Analyzer Plugin

3.1.3 Proceeding, Validation of Performance, Reliability and Efficiency
Following the Agile methodology principles, the FALCON development process will pass different devel-
opment cycles. After each development cycle, a verification and validation activity will be executed. The
proposed validation and verification methodology is shown in Figure 28.

https://en.wikipedia.org/wiki/IEEE_829

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 71 / 76

Figure 28 Validation and verification approach

During the cycle execution, the verification of performance and reliability will be ensured on two levels.
Firstly, it will be ensured on unit test level throughout the whole development cycle. Secondly, it will be
ensured on integration test and system test level after a development cycle has ended. The duration of a
development cycle is determined dynamically with respect to its complexity. This proceeding differs to a fix
period of a sprint in the agile development process.

It is worth noting that this set of tests will be updated by the partners responsible of each module during
every cycle, integrating the new objectives and taking into account possible changes. Possible failures in the
automatic tests will be addressed by developers responsible for the involved module(s), within the current
development cycle or in the following ones.

When a cycle is completed successfully until the system test level, the test beds built upon business stories
will be updated with the new software, and the evaluation of Efficiency will take place. The Efficiency (user
driven verification and validation) includes:

 the execution of business test cases

 the review by key users

 the creation of evaluation reports

 the improvement of requirements

Hereby, the review of ‘key users’ will produce evaluation reports; after evaluation reports, they will also be
interviewed in order identify improvements and changed requirements for the following cycle.

It is worth noting that, for the validation of each cycle and for each business scenario, it will be necessary to
describe the subset of the test cases and the parts of scenario currently covered by the software development.
The responsibility for the validation and verification of the usability is both of the business case partner and
the supporting technical partner. The user centric review process envisages a couple of documents to enable
an objective review and evaluation process. The proposed documentation material, which could be applied,
is shown in the following listing.

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 72 / 76

a. Template for evaluation reports

b. template for reviews

c. template for interviews

d. concrete interviews

The templates and a base version of the interviews shall be provided within the activities of evaluation tasks
(T5.4, T6.4, T7.4, T8.4).

The concrete interviews to be used for a validation cycle shall be created from the base version, taking into
account the received validation reports.

Moreover, for each business case, the identification of the following staff is required:

 Key users

 Personnel dedicated to review the key users when using the scenario

 Personnel dedicated to interview the key users

 Personnel dedicated to business test case execution

This personnel will be indicated by the business case partners and their supporting technical partners in the
context of evaluation tasks (T5.4, T6.4, T7.4, T8.4)

3.2 Performance
The performance of a software can be determined and ensured through stress testing, which focus on soft-
ware testing activities regarding software robustness. The application of the V&V standard in addition to the
tool chain of the FALCON development process enables stress testing on all testing levels. The bottleneck
of performance can be detected from micro-service level via integration level between more micro-services
and or on the overall platform level. Naturally, small changes within a micro-service could have significant
impact on the overall performance. To detect changes on micro-service level regularly (during and after a
development cycle), which would downgrade the performance, stress testing is a mandatory part of the daily
work of the continuous integration tool Jenkins.

In doing so, the stress testing covers load as well as stress tests. A stress test tries to break the system under
test by overwhelming its resources or by taking resources away from it. Examples of possible stress test with
respect to the FALCON micro-service architecture could be:

 Increase the baseline number for concurrent users/HTTP connections

 Take essential resources like the Triple Store offline and restart it

 Close randomly ports and open it to simulate random firewall settings by the stakeholders.

A load test is conducted in a controlled environment, which should be similar to the IT infrastructure of the
later stakeholder. Then, load tests are executed which move the amount of data from low loads too high. The
high amount of data should be so high, that it will not occur in a real environment.

Both kinds of tests are standardized through the ISO 147565, which describe how to execute these tests
through setup the user's profiles, determine the momentum for low and high data loads and finally execute
the measurements.

5 http://www.iso.org/iso/catalogue_detail.htm?csnumber=25492

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 73 / 76

3.3 Reliability
The reliability of a software is determined and ensured through reliability testing which focuses on the ful-
fillment of the functional requirements. In so doing, the software's ability to function correctly according to
given environmental conditions and for a particular amount of time should be ensured. The application of
the V&V standard in addition to the tool chain of the FALCON development process enables the execution
of tests on all testing levels to check the correct function with respect to varying input parameter values and
environmental aspects. In theory, input data is gathered from various stages of development, such as the
design and operating stages. The tests are limited due to restrictions such as cost and time restrictions. For
that reasons the chosen test space is determined through specification-based or black-box techniques. The
International Software Testing Qualification Board 6teach the following methods to identify the relevant test
space and support the necessary amount of test cases: equivalence partitioning, boundary value analysis,
decision table testing, state transition testing and the use case testing. The listed methods will be also applied
in the FALCON project to achieve the necessary test coverage of such kind of modular solution.

The specified and created test cases will be added physically to the micro-service source code. This linkage
enables an automatic tool chain to check the reliability. Each time a micro-service was changed and the
source code are uploaded, the continuous integration tool executes all relevant test cases to ensure the ongo-
ing reliability of the overall solution. In the worst case, developers will be informed which modules violates
the reliability in which test cases. This approach enables a fast reaction to faulty changes and therefore, it
will result in mostly stable software snapshots for the stakeholders.

3.4 Efficiency
Here, the term efficiency addresses not the performance aspect but rather the overall quality aspect of the
software. The ISO/IEC 9126 defines the quality aspects and enables the estimation of the overall software
quality. The estimation is based on criteria, which are categorized in groups. In the following, the groups are
listed which are considered in the FALCON project.

 Functionality

 Reliability

 Usability

 Efficiency

 Maintainability

 Portability

The groups functionality/reliability are also considered in 3.3 and the groups efficiency is also considered
3.2 on bases of test cases in detail. The consideration of these groups through automatic testing approaches
establish the quality ensurance during the development phase.

The quality of the FALCON VOP will be evaluated on basis of prototypes in different stage of expansion.
The evaluation process will not only be applied on basis of test cases but rather on the strong involvement
of the stakeholders and key users. In consequence, the listed criteria groups will be evaluated through inter-
active reviews and subsequent interviews. The objective of a review is to monitor the key users while they
are using the software in defined scenarios. The scenarios will be defined on basis of the developed business
stories (D5.1 – D8.1) and will cover the requirements and complexity of the proposed real world application

6 http://www.german-testing-board.info/fileadmin/gtb_repository/downloads/pdf/lehrplan/ISTQB_FL_Syll_2011.pdf

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 74 / 76

scenario. After each review, the key users create an estimation report on basis of the criteria groups. Subse-
quently, an interview is held to identify improvements and changed requirements for the next iteration.

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 75 / 76

4 Summary and Outlook
4.1 Summary
The requirements identified in D1.1 as well as the requirements which are the outcome of the Business Cases
(WP5-WP8) have been used to define the FALCON VOP architecture, which is shown in section 2.2. For
each contained FALCON module, a corresponding module description was included in this deliverable. For
each module descriptions, the main functionality and GUI mock-ups have been documented. The link of the
conceptual module description to the current software engineering activities has been realized through a
micro-service name and a corresponding interface description. Both kinds of information are part of a module
description.

Apart from the architecture and list of module descriptions, the deliverable has presented the technical quality
standards to be applied. The quality standards focus on performance, reliability and efficiency. To ensure the
three quality criteria, FALCON applies a software engineering approach, which combines the benefits of the
V-model, and the agile approach. The validation and verification will be based on a test process as well as
on user driven reviews.

The test process ensures the quality of the software prototypes through test cases covering the following test
levels: unit testing, integration testing and system testing. All test cases will be part of the software modules
and will be created for each test level. The inclusion of test cases into the FALCON VOP modules will
enable an automatic test execution and quality control. For this purpose, the FALCON development process
identified a set of development tools to provide the continuous and automated testing approach. The testing
details like the coverage criteria or the responsibilities have been described in 3.1.2 in more details.

In contrast, the reviews are based on scenarios. The identified key users evaluate the FALCON VOP on basis
of scenarios. The resulting evaluation results will be collected via interviews and subsequently will be ana-
lysed. The interviews will follow a strict structure to be quick evaluable and therefore, direct useful for the
developers. The evaluation and interview process has been described in 3.1.3.in more detail

4.2 Outlook
The development of the listed software modules/micro-services has been started in the technical work pack-
ages (WP1 -4). The results are going to be reported in the corresponding deliverables. The proposed archi-
tecture and the corresponding set of modules are not fixed. The ongoing evaluation, which is based on pro-
totypes in different progress states, could result in additional or changing functional requirements. In such
cases, the architecture and affected module description will be updated and uploaded to Owncloud to have
the newest version available.

PUBLIC

Copyright FALCON Consortium 2015-2017 Page 76 / 76

5 References
Boehm , B., and R. Turner. Balancing Agility and Discipline: A Guide for the Perplexed. Vols. ISBN 0-321-
18612-5 Appendix A, pages 165–194. Boston: MA: Addison-Wesley, 2004.

Larman, Craig . Agile and Iterative Development: A Manager's Guide. 2004.

SRM Technologies. Embedded 360. 2013. http://www.embedded360.com/execution_approach/tradi-
tional_model.htm.

